PUBLIC ABSTRACT

Applicant (primary) name:	EnviroScrub Technologies C	<u>orporation</u>
Applicant=s address:	1650 W 82 nd Street, Suite 650	0
	Minneapolis MN 5543	
	Street City	State Zipcode
Team Members (if any):	John von Steinbergs	Excelsior, MN 55391
(listing represents only participants at time of application, not necessarily final team membership)	Name City	
	Charles F. Hammel	Escondido, CA 92027
	Name City	
	Kevin P. Kronbeck	Baxter, MN 56425
	Name City	State Zipcode
	Richard Boren	Bakersfield, CA 93312
	Name City	State Zipcode
	(Use continuation sheet if needed.)	
Proposal Title: <u>Enviro</u> Commercial Application:	Scrub One Step SOx/NOx Ro	eduction Technology XX Existing Facilities
	9 Other, Specify:	
Technology Type: Enviro	onmental	
Estimated total cost of proj		
Total Estimated Cost:	\$ 25,051,986	
Estimated DOE Share:	\$ 12,525,993	
Estimated Private Share:	\$ 12,525,993	

PUBLIC ABSTRACT (cont=d)

Anticipated Project Site(s):		Cohasset, Itasca County, MN 55721		
	Loca	ation (city, county, etc.)	State Zipcode	
	Loca	ation (city, county, etc.)	State Zipcode	
	Loca	ntion (city, county, etc.)	State Zipcode	
Type of coal to be used:	Sub-bitu	minous Powder Riv	er Basin	
	Primary		- Alternate (if any)	
Size or scale of project:		ay input d/or	Megawatts, Barrels per day, etc.	
Duration of proposed proj	Other (if necesed) ect: 24			
PRIMARY CONTACT: For additional information interested parties should c	-		Dergs Chief Executive Officer	
(952) 884-7337 Telephone Number	_	Position EnviroScrub Tech Company	nologies Corporation	
_jsteinbergs@enviroscrub.com e-mail address	<u> </u>	1650 W 82 nd Stre	et, Suite 650	
		Minneapolis, MN City	State Zipcode	
Alternative Contact:		·	and Chief Technology Officer	_
(619) 990-6696 Telephone Number		Position EnviroScrub Tech Company	nologies Corporation	

chammel@enviroscrub.com	1650 W 82 nd Street, Suite 650
e-mail address	Address
	NC 1: NO. 55401

Minneapolis, MN 55431
City State Zipcode

PUBLIC ABSTRACT (cont=d)

Brief description of project:

EnviroScrub Technologies Corporation, a Minnesota corporation, is a deployment-stage company engaged in the development of the *Pahlman Process*TM technology, a multi-pollutant control (MPC) process supported by US and international patent filings. The *Pahlman Process*TM removes oxides of nitrogen (NO_x) at greater than 99% removal efficiencies, oxides of sulfur (SO_x) at greater than 99% removal efficiencies, elemental and oxidized (Hg) at greater than 65% removal efficiencies from gas streams of coal fired and other industrial processes. Minnesota Power is also a Minnesota Corporation, whose primary business is generating and selling electricity that is primarily produced from coal. EnviroScrub, in cooperation with Minnesota Power, seeks to further develop the *Pahlman Process*TM technology to a commercial stage.

The proprietary *Pahlman Process*TM technology removes pollutants from emission gases using EnviroScrub's proprietary *Pahlmanite*TM *sorbent*, regenerable and reusable compounds. The Pahlmanite sorbent is regenerable and can be regenerated and reused many times over. The *Pahlman Process*TM technology includes dry, regenerable methods of NOx and SOx, emissions reduction from industrial process flue gases. Unlike selective catalytic reduction ("SCR"), an ammonia gas (NH₃) based NOx scrubbing process, and flue gas desulfurization ("FGD"), a "oncethrough" limestone-based SO₂ scrubbing process, the *Pahlman Process*TM technology is capable of removing both NOx and SOx gases with a single process. Further, the *Pahlman Process*TM technology represents true zero-ammonia (NH₃)-technology ("ZAT") for NOx scrubbing applications and is not a "once-through" scrubbing method.

A significant amount of research has been completed with the EnviroScrub's prototype facility which is mounted on a 40 foot trailer. The research has clearly proven that the *Pahlman Process*TM technology is extremely effectively for NOx and/or SOx removal. The use of a bag house has worked well as a reaction chamber in the prototype. The results of EnviroScrub studies using a bag house, a fluidized bed and a spray injection system indicate that a spray injection system is likely the best method of delivering *Pahlmanite*TM *sorbent* to the flue gas stream. In this application for Clean Coal Technologies Initiative funds, we are requesting funds to construct the first commercial sized *Pahlman Process*TM Plant. It will be a retrofitted 20 MW sized facility using a spray injections system which will be placed in parallel with the existing pollution control equipment on Minnesota Power's Boswell Unit 1, a 75MW coal-fired generator located in Cohasset, Minnesota.

Indications are that the *Pahlman Process*TM technology removes NO_x SO_x, and Hg compounds from gas streams more efficiently, and more cost effectively, than current best-available-control technology ("BACT"). EnviroScrub is seeking federal funding in order to further develop and commercialize its highly effective pollution control technology and demonstrate on a large scale the BACT-like efficiency of the *Pahlman Process*TM technology.